

Design of AAC floor slabs according to EN 12602

Example 1: Floor slab with uniform load

1.1 Issue

Design of a floor slab under a living room

Materials

Component with a compressive strength class AAC 4,5, density class 550, welded steel reinforcement with tensile yield strength 500 MPa and ultimate tensile strength 550 MPa.

EN 12602, table 1 and 2 EN 10080

1.2 Material properties

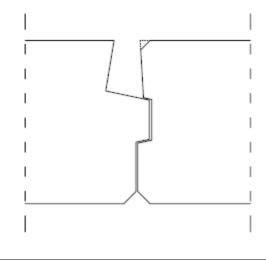
Dry Density

Table 1: Density classes, dry densities in kg/m³

ı		J. 1, J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		acricines in rigini				
	Density	400	450	500	550	600	650	700
	class							
	Mean dry	> 350	> 400	> 450	> 500	> 550	> 600	> 650
	density ρ _m	≤ 400	≤ 450	≤ 500	≤ 550	≤ 600	≤ 650	≤ 700

EN 12602, 4.2.2.3

Compressive strength

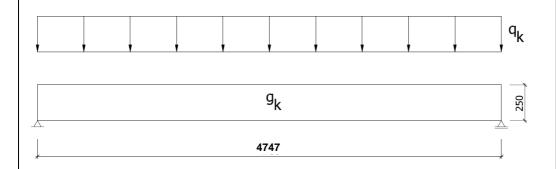

Table 2: Compressive strength classes for AAC in MPa

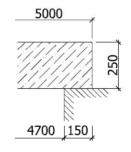
Strength	AAC						
class	2	2,5	3	3,5	4	4,5	5
f _{ck}	2,0	2,5	3,0	3,5	4,0	4,5	5,0

EN 12602, 4.2.4

1.3 Type of element

Profile



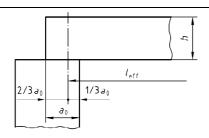


2 System and dimensions

2.1 System

Longitudinal section

Minimum value for support length


AAC component	minimum requirement		
beams	60 mm		
floor elements	40 mm		
roof elements	35 mm		

EN 12602, A.11

Recommended values

AAC component	support material	minimum	
7 tr to component	oupport material		
		requirement	
beams	masonry	100 mm	
floor elements	masonry	70 mm	
	steel	50 mm	
	concrete	50 mm	
roof elements	masonry	70 mm	
	steel	50 mm	
	concrete	50 mm	
	wood	50 mm	
wall elements	steel	50 mm	
	concrete	50 mm	

$$L_{eff} = I_w + \frac{1}{3} a_{1,min} + \frac{1}{3} a_{2,min} = 4,70 + \frac{2}{3} \cdot 0,07 = 4,747 m$$

The component has to be designed for all load cases also for impacts resulting from transport.

The relevant load case for that is the transport with a fork lifter and for the weak axis.

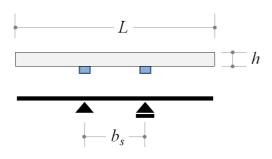


Figure 1: Transport situation fork lift truck

Assumption for distance forks: $b_s = 1,00 \text{ m}$

$$L_{cantilever} = \frac{(L - b_s)}{2} = \frac{(5,00 - 1,00)}{2} = 2,0 \text{ m}$$

2.2 Cross section

h = 250 mm

b = 625 mm

2.3 Concrete cover and effective depth

 $c_1 = 20 \text{ mm}$

 $c_2 = 20 \text{ mm}$

Assumption for fire resistance class: REI 60

With a granted diameter of 8 mm the effective depth is:

$$d = 250 \text{ mm} - 20 - \frac{8}{2} = 226 \text{ mm}$$

3 Loads

Self-weight of AAC element: with 35 kg/m³ steel and 6 M-% moisture content of AAC

EN 12602, 4.2.2.4 (1)

Load	
Permanent loads	
 2,5 cm ceramic tiles (incl. glue) 	0,55 kN/m ²
6 cm cement screed	1,32 kN/m ²
• AAC $(g = 6.2 \text{ kN/m}^3)$	1,55 kN/m ²
permanent load, g _k =	3,42 kN/m ²
Variable loads, q _K =	2,00 kN/m ²

Thickness of slab = 0,25 m

Transport weight of AAC element:

 $\rho_{trans} = 7,75 \text{ kN/m}^3$

EN 12602, 4.2.2.4 (3)

4 Internal forces

Internal forces are determined for a single component with a width of 625 mm.

Load combinations acc. to EN 1990

4.1 Internal forces for characteristic combinations

$$G_{d1} = \gamma_G \cdot b \cdot g_k = 1,35 \cdot 0,625 \cdot 3,42 = 2,89 \text{ kN/m}$$

$$Q_{d1} = \gamma_Q \cdot b \cdot q_k = 1,50 \cdot 0,625 \cdot 2,00 = 1,88 \text{ kN/m}$$

$$V_{Sd1} = \frac{(G_{d1} + Q_{d1}) \cdot l_{eff}}{2} = \frac{2,89 + 1,88}{2} \cdot 4,747 = 11,32 \text{ kN}$$

$$M_{Sd1} = \frac{(G_{d1} + Q_{d1}) \cdot l_{eff}^{2}}{8} = \frac{4,77 \cdot 4,747^{2}}{8} = 13,44 \text{ kNm}$$

4.2 Internal forces for frequent combinations

$$G_{d2} = b \cdot g_k = 0.625 \cdot 3.42 = 2.14 \text{ kN/m}$$

$$Q_{d2} = \psi_1 \cdot b \cdot q_k = 0.5 \cdot 0.625 \cdot 2.00 = 0.63 \text{ kN/m}$$

$$V_{Sd2} = \frac{(G_{d2} + Q_{d2})}{2} \cdot I_{eff} = \frac{2,14 + 0,63}{2} \cdot 4,747 = 6,57 \text{ kN}$$

Category A, ψ₁=0,5

$$M_{Sd2} = \frac{(G_{d2} + Q_{d2}) \cdot l_{eff}^{2}}{8} = \frac{2,77 \cdot 4,747^{2}}{8} = 7,80 \text{ kNm}$$

4.3 Internal forces for quasi-permanent combinations

$$G_{d3} = b \cdot g_k = 0.625 \cdot 3.42 = 2.14 \text{ kN/m}$$

$$Q_{d3} = \psi_2 \cdot b \cdot q_k = 0.3 \cdot 0.625 \cdot 2.00 = 0.38 \text{ kN/m}$$

$$V_{Sd3} = \frac{(G_{d3} + Q_{d3})}{2} \cdot I_{eff} = \frac{2,14 + 0,38}{2} \cdot 4,747 = 5,98 \text{ kN}$$

$$M_{Sd3} = \frac{(G_{d3} + Q_{d3}) \cdot l_{eff}^{2}}{8} = \frac{2,52 \cdot 4,747^{2}}{8} = 7,10 \text{ kNm}$$

Category A, $\psi_2=0,3$

4.4 Internal forces for transport situations

$$G_T = \gamma_G \cdot \rho_{trans} \cdot b \cdot h = 1,35 \cdot 0,625 \cdot 7,75 \cdot 0,25 = 1,64 \text{ kN/m}$$

$$V_T = \gamma_T \cdot \frac{G_T}{2} \cdot L = 1.3 \cdot 1.64 \cdot 2.00 = 4.26 \text{ kN}$$

$$M_T = \frac{\gamma_T \cdot G_T \cdot L^2_{cantilever}}{2} = \frac{1,3 \cdot 1,64 \cdot 2,00^2}{2} = 4,26 \text{ kNm}$$

where $\gamma_T = 1.3$ (assumption for dynamic coefficient due to manipulation of components, when indicated consideration of national regulations)

5 Design

5.1 Material properties

Characteristic compressive strength, $f_{ck} = 4.5 \text{ MPa} = 4500 \text{ kN/m}^2$

Basic Shear Strength,

$$\tau_{Rd} = \frac{0,063 \cdot f_{ck}^{0.5}}{\gamma_c} = 0,063 \cdot 4,5^{0.5} / 1,73 = 0,0773 \text{ MPa}$$

Mean modulus of elasticity of AAC slab, $E_{cm} = 5 \cdot (\rho_m - 150) = 2000 \text{ N/mm}^2$

Characteristic strength of steel, $f_{yk} = 500 \text{ MPa} = 500 \text{ N/mm}^2$

EN 12602, 4.2.4

EN12602, A.4.1.2 (A.6)

EN 12602, 4.2.7

EN 12602, 4.3.1

5.2 Design for bending

Finding equilibrium of stress / strain:

$$1000 \cdot m_d = \frac{1000 \cdot M_{Sd1} \cdot \gamma_c}{\alpha \cdot f_{ck} \cdot A_c \cdot d} = \frac{13,44 \cdot 1,44}{0,85 \cdot 4,5 \cdot 0,625 \cdot 0,226 \cdot 0,226} = 158,5$$

Reading from design table (see Annex A):

$\varepsilon_{\rm c} = 3,00 \%$	$\varepsilon_{\rm S} = 8.41 \%$
$k_x = 0.263$	1000∙ϖ = 175,2

$$\mathsf{A_s} = \ A_c \cdot \varpi \cdot \frac{\alpha \cdot \mathsf{f_{ck}} \cdot \gamma_{\mathsf{S}}}{\gamma_c \cdot \mathsf{f_{yk}}} = \frac{0,625 \cdot 0,226 \cdot 175,2}{1000} \cdot \frac{0,85 \cdot 4,5 \cdot 1,15}{1,44 \cdot 500} = 1,51 \ \mathsf{cm^2}$$

chosen: $7 \varnothing 8,0 \text{ mm } (A_{s1} = 3,52 \text{ cm}^2)$

Upper reinforcement:

$$1000 \cdot m_d = \frac{1000 \cdot M_7 \cdot \gamma_c}{\alpha \cdot f_{ck} \cdot A_c \cdot d} = \frac{4,26 \cdot 1,44}{0,85 \cdot 4,5 \cdot 0,625 \cdot 0,227 \cdot 0,227} = 49,80$$

Reading from design table (see Annex A):

$\epsilon_{c} = 1,55 \%$	$\varepsilon_{\rm s} = 10,00 \ \%$
$k_x = 0.134$	1000-∞ = 52,14

$$A_{s} = A_{c} \cdot \varpi \cdot \frac{\alpha \cdot f_{ck} \cdot \gamma_{s}}{\gamma_{c} \cdot f_{yk}} = \frac{0,625 \cdot 0,227 \cdot 52,14}{1000} \cdot \frac{0,85 \cdot 4,5 \cdot 1,15}{1,44 \cdot 500} = 0,452 \text{ cm}^{2}$$

chosen: $3 \varnothing 6,0 \text{ mm } (A_{s2} = 0,85 \text{ cm}^2)$

5.3 Minimum reinforcement

$$f_{cflm} = 0.27 \cdot 4.5 = 1.215 \text{ MPa}$$

$$A_{ct} = b \cdot \frac{h}{2} = 62,5 \cdot 12,5 = 781 \text{cm}^2$$

$$A_{s,min} = k \cdot A_{ct} \cdot f_{cflm} / f_{yk} = 0.4 \cdot 781 \cdot 1.215 / 500 = 0.76 \text{ cm}^2$$

$$A_{s.min} = 0.76 \text{ cm}^2 < 3.52 \text{ cm}^2$$

EN 12602, A.3.4 (A.3)

EN 12602, A.4

5.4 Design for shear force

Determination of reinforcement ratio:

$$\rho_{l} = \frac{A_{s,exis}}{b \cdot d} = \frac{3,52}{62,5 \cdot 22.6} = 0,002492 < 0,005$$

Minimum design value of shear force:

$$V_{Rd1} \ge 0.5 \cdot \frac{f_{ctk;0.05}}{\gamma_c} \cdot b_w \cdot d = 0.5 \cdot 0.10 \cdot 4500 / 1.73 \cdot 0.625 \cdot 0.226$$

= 18,37 kN

EN 12602, (A.6)

Design value of shear force:

$$\begin{split} V_{Rd1} &= \tau_{Rd} \cdot (1 - 0.83 \cdot d) \cdot (1 + 240 \cdot \rho_I) \cdot b_w \cdot d \\ &= 77.3 \cdot (1 - 0.83 \cdot 0.226) \cdot (1 + 240 \cdot 0.00249) \cdot 0.625 \cdot 0.226 \\ &= 14.17 \text{ kN} \end{split}$$

Higher value is determinant (critical) : $V_{Rd1} = 22,04 \text{ kN}$

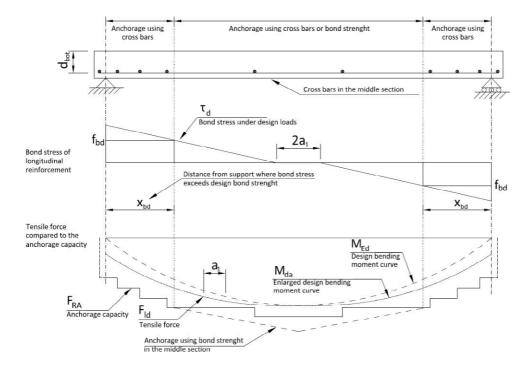
$$V_{Rd1} = 18,37 \text{ kN} > 11,32 \text{ kN} = V_{Sd1}$$

Therefore, no shear reinforcement is required.

5.5 Spacing of Longitudinal Bars

EN 12602, 5.2.7.2.2

Centre distance between bars : 50 mm \leq s₁₁ \leq 2 d


Therefore, we consider the longitudinal bars at a distance of 70 mm centre to centre as per the limits.

And the distance of longitudinal bars from the panel surface is supposed to be 20 mm.

6 Anchoring of longitudinal reinforcement

Cross-Sectional View

Description reinforcement layout:

diameter cross bars: $\mathcal{O}_t = 5.5 \text{ mm}$

distance between longitudinal bars: s_t = 70 mm

distance to bottom side of panel:

 $e = c + \emptyset_{sl} + \emptyset_t / 2 = 20 + 8.0 + 5.5 / 2 = 30.75 \text{ mm}$

Effective length of transverse bars:

$$t_2 = t_3 = t_4 = t_5 = t_6 = 2 \cdot s_t/2 = 70 \text{ mm} < 14 \cdot \emptyset_t = 77 \text{ mm}$$

$$=> t_2 = t_3 = t_4 = t_5 = t_6 = 70 \text{ mm}$$

 $t_1 = t_7 = t_1' + t_1'' = t_7' + t_7'' = 35 + 15 \text{ mm} = 50 \text{ mm} < 14 \cdot \emptyset_t = 77 \text{ mm}$

 $=> t_1 = t_7 = 50 \text{ mm}$

 t_i < 8 · \mathcal{O}_t = 44 mm

 $t_1 = t_1 + t_2 + t_3 + t_4 + t_5 + t_6 + t_7 = 450 \text{ mm}$

Maximum tensile force:

 $F_{Id,max} = M_{d1,max} / z = 13,44 / (0.9 \cdot 0.226) = 66,08 \text{ kN}$

 $F_{Id,support} = M_{d1,support} / z = 2,442 / (0,9 \cdot 0,226) = 12,01 \text{ kN}$

Assume 9 transverse cross bars with diameter 5,5 mm for half of the panel and the arrangement is shown below:

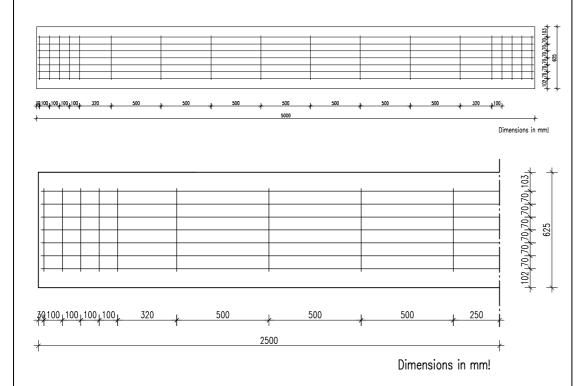


Figure 1: Reinforcement layout

Design value for bearing strength at support (m = 1,3; n_p = 2, transverse compression at support):

$$\begin{split} f_{\text{Id,support}} &= \frac{1,35 \cdot \text{m} \cdot (\text{e} \, / \, \emptyset \text{t})^{1/3} \cdot \alpha \, \cdot f_{\text{ck}}}{\gamma_c} \, \leq 2,2 \cdot \frac{f_{\text{ck}}}{\gamma_c} \\ &= \frac{1,35 \cdot 1,3 \cdot (30,75 \, / \, 5,5)^{1/3} \cdot \, 0,85 \cdot 4,5}{1,44} \, \leq 2,2 \cdot \, \frac{4,5}{1,44} \end{split}$$

Bond Class B1

= 8,27 MPa ≤ 6,88 MPa

therefore, $f_{Id,support} = 6,88 \text{ MPa}$

Design value for bearing strength at middle of span (m = 1,067; n_p = 2, transverse compression at support):

transverse compression at support):
$$f_{\text{Id,field}} = \frac{1,35 \cdot \text{m} \cdot (\text{e} / \emptyset \text{t})^{1/3} \cdot \alpha \cdot f_{\text{ck}}}{\gamma_c} \leq 2,2 \cdot \frac{f_{ck}}{\gamma_c}$$

$$= \frac{1,35 \cdot 1,067 \cdot (30,75 / 5,5)^{1/3} \cdot 0,85 \cdot 4,5}{1,73} \le 2,2 \cdot \frac{4,5}{1,73}$$

= 5,65 MPa < 5,82 MPa

therefore, $f_{Id,field} = 5,65 \text{ MPa}$

where, α is a reduction coefficient for long term effect on compressive strength of AAC (α = 0,85)

EN 12602, A.3.2

Welding Strength

Anchorage force capacity (F_{RA}):

$$\begin{split} F_{RA,support} &= 0.83 \cdot n_t \cdot \not O_t \cdot t_t \cdot f_{Id,support} \leq 0.6 \cdot n_l \cdot n_t \cdot F_{wg} / \gamma_s \\ &= 0.83 \cdot 2 \cdot 5.5 \cdot 450 \cdot 6.88 \leq 0.6 \cdot 7 \cdot 2 \cdot 0.25 \cdot A_{sl} \cdot f_{yk} / \gamma_s \\ &= 28.27 \text{ kN} < 45.89 \text{ kN} \end{split}$$

 $F_{\text{RA,max}} = \sum \min \left[0.83 \cdot \phi_{tot} \cdot t_t \cdot f_{ld}(n_t); \frac{0.60 \cdot n_l \cdot n_t \cdot F_{wg}}{\gamma_{S}} \right]$ = 110,33 kN < 206,53 kN

 $= 0.63 \cdot 2 \cdot 5.5 \cdot 450 \cdot 6.66 \le 0.6 \cdot 7 \cdot 2 \cdot 0.25 \cdot A_{sl} \cdot l_{yk} / \gamma_{s}$ = 28.27 kN < 45.89 kNClass S1

As, $F_{RA,support} \ge F_{Id,support}$ and $F_{RA,max} \ge F_{Id,max}$

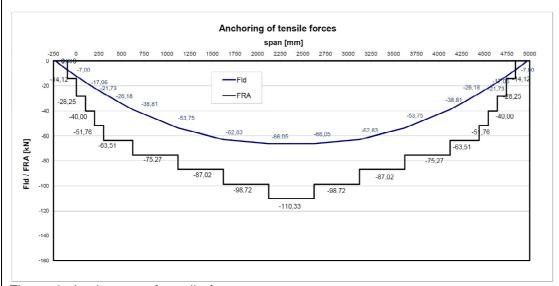


Figure 2: Anchorage of tensile forces

As we can see from fig. 2 that the anchorage capacity force does exceed the design tensile force at each section of the panel.

Therefore, the assumption is satisfied for the required conditions. So, we can use 18 cross bars with \emptyset 5,5 mm (for whole panel).

The sufficient anchorage has to be proven also for the upper reinforcement (according to the method above) which is not shown here.

7 Serviceability Limit States

EN 12602, A.9.4

Cracking moment,
$$M_{cr} = (b \cdot h^2 / 6) \cdot f_{cflm}$$

= $(0,625 \cdot 0,25^2 / 6) \cdot (0,27 \cdot 0,8 \cdot 4,5)$
= $6,33 \text{ kNm}$

EN 12602, A.9.4.3 and 4.2.5

where, f_{cflm} is the flexural strength of AAC (= 0,27 · 0,8 · f_{ck})

As, $M_f > M_{cr}$, therefore, the slab is considered to behave in a manner intermediate between uncracked and cracked condition.

7.1 Deflection under uncracked condition

7.1.1 Short-term deflection

Ratio of the modulus of elasticity of reinforcing steel and AAC:

$$n = \frac{E_s}{E_{cm}} \approx \frac{200000 \quad N / mm^2}{2000 \quad N / mm^2} = 100$$

EN 12602, (A.42)

Moment of area of AAC and reinforcement:

$$l_{c,brutto} = \frac{b \cdot h^3}{12} + n (7 \cdot \pi \cdot (\emptyset_1/2)^4 / 4 + 3 \cdot \pi \cdot (\emptyset_2/2)^4 / 4) = 81396,19 \text{ cm}^4$$

The upper longitudinal reinforcement can be fully taken into account to determine the moment of inertia. The position of the centre of gravity of the reinforcement layer is supposed to be 2,4 cm from the panel surface.

Parts of moment of inertia from consideration of the reinforcement:

$$A_{s1} = 3,52 \text{ cm}^2$$

 $A_{s2} = 0,85 \text{ cm}^2$

Centre of gravity,

$$y_{S} = \frac{b \cdot h \cdot h/2 + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot h + n \cdot (A_{s1} + A_{s2})} = \frac{22297,05}{1999,5} = 11,15 \text{ cm}$$

where, y_{s1} and y_{s2} are the distances from the centre of the reinforcement steel to the bottom surface of the slab.

$$I_{ST} = b \cdot h \cdot (\frac{h}{2} - y_s)^2 + n \cdot (A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2)$$

$$= 1563 \cdot (12,5 - 11,15)^2 + 100 \cdot (3,52 \cdot (2,4 - 11,15)^2 + 0,85 \cdot (22,7 - 11,15)^2)$$

$$= 40942,28cm^4$$

$$E_{cm} \cdot I_{ci} = E_{cm} \cdot (I_{C;BRUTTO} + I_{st}) = 2000 \cdot (81396,19 + 40942,28) \cdot 10^{-8}$$

$$= 2,447MNm^2$$

Deflection due to load combination 2 (frequent action combinations):

$$y_{el} = \frac{5}{48} \cdot \frac{M_{\text{Sd2}} \cdot L_{\text{eff}}^{2}}{E_{cm} \cdot I_{ci}} = \frac{5}{48} \cdot \frac{0,00780 \cdot 4,747^{2}}{2,447} = 0,00748 m$$

$$y_{el} = 0,00748 m = 0,75 cm < 1,90 cm = \frac{L_{\text{eff}}}{250}$$

General note:

The limit value for the maximum deflection may be found in a national application document. The recommended value for the calculated deflection of roof and floor components subjected to quasi-permanent loads is (according to EN 12602) span/250.

EN 12602, 9.4.1, Note 1

7.1.2 Long-term deflection

For long term deflection an effective modulus of elasticity,

$$E_{c,eff} = E_{cm} / (1 + \phi)$$

is used.

Therefore, $E_{c,eff} = 1000 \text{ N/mm}^2$

and

$$n = \frac{E_s}{E_{c.eff}} \approx \frac{200000 \text{ N/mm}^2}{1000 \text{ N/mm}^2} = 200$$

Moment of area of AAC and reinforcement,

$$l_{c,brutto} = \frac{b \cdot h^3}{12} + n (7 \cdot \pi \cdot (\varnothing_1/2)^4 / 4 + 3 \cdot \pi \cdot (\varnothing_2/2)^4 / 4) = 81412,17 \text{ cm}^4$$

Centre of gravity,

$$y_{S} = \frac{b \cdot h \cdot h/2 + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot h + n \cdot (A_{s1} + A_{s2})} = \frac{25079,85}{2436,5} = 10,29 \text{ cm}$$

Moment of inertia for reinforcement,

$$I_{ST} = b \cdot h \cdot (\frac{h}{2} - y_s)^2 + n \cdot (A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2)$$

$$= 1563 \cdot (12.5 - 10.29)^2 + 200 \cdot (3.52 \cdot (2.4 - 10.29)^2 + 0.85 \cdot (22.7 - 10.29)^2)$$

$$= 77640.70 cm^4$$

$$E_{c,eff} \cdot I_{ci} = E_{c,eff} \cdot (I_{C;BRUTTO} + I_{st}) = 1000 \cdot (81412.17 + 77640.70) \cdot 10^{-8}$$

$$= 1.591 MNm^2$$

EN 12602, (A.43)

Deflection due to load combination 3 (quasi-permanent combinations):

$$y_{\infty} = \frac{5}{48} \cdot \frac{M_{\text{Sd3}} \cdot L_{\text{eff}}^{2}}{E_{c,\text{eff}} \cdot I_{ci}} = \frac{5}{48} \cdot \frac{0,00710 \cdot 4,747^{2}}{1,591} = 0,01048 m$$
$$y_{\infty} = 0,01048 m = 1,05 cm < 1,90 cm = \frac{L_{\text{eff}}}{250}$$

7.2 Deflection under cracked condition

7.2.1 Short-term deflection

The ratio of the modulus of elasticity of reinforcing steel and AAC:

$$n = \frac{E_s}{E_{cm}} \approx \frac{200000 \quad N / mm^2}{2000 \quad N / mm^2} = 100$$

EN 12602, (A.43)

In this case, we consider only compression zone of AAC and reinforcement for the calculation of moment of inertia. Therefore, first we will find the x-equilibrium

$$x = \frac{\sqrt{1 + 4 \cdot d \cdot A} - 1}{2 \cdot A} = 11,29 \text{ cm}$$

where, x is height of compression zone from top surface of panel d is effective height, $A = b \cdot E_{cm} / (2 \cdot A_{s1} \cdot E_S)$

The upper longitudinal reinforcement can be fully taken into account to determine the moment of inertia.

Moment of area of compression zone AAC and reinforcements,

$$l_{c,brutto} = \frac{b \cdot x^3}{12} + n \cdot (7 \cdot \pi \cdot (\emptyset_1/2)^4 / 4 + 3 \cdot \pi \cdot (\emptyset_2/2)^4 / 4) = 7511,14 \text{ cm}^4$$

The position of the centre of gravity of the reinforcement layer is supposed to be 2,4 cm from the panel surface.

Parts of moment of inertia from consideration of the reinforcement:

$$A_{s1} = 3.52 \text{ cm}^2$$

 $A_{s2} = 0.85 \text{ cm}^2$

Centre of gravity is:

$$y_S = \frac{b \cdot x \cdot (h - x/2) + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot x + n \cdot (A_{s1} + A_{s2})} = \frac{16431,7}{1142,6} = 14,38 \text{ cm}$$

where, y_{s1} and y_{s2} are the distances from the centre of the reinforcement steel to the bottom surface of the slab

$$I_{ST} = b \cdot x \cdot (h - x/2 - y_s)^2 + n \cdot (A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2)$$

= 73867.74 cm⁴

$$E_{cm} \cdot I_{ci} = E_{cm} \cdot (I_{C;BRUTTO} + I_{st}) = 2000 \cdot (7511,14 + 73867,74) \cdot 10^{-8}$$

 $E_{cm} \cdot I_{ci} = 1,63MNm^2$

Deflection due to load combination 2 (frequent action combinations):

$$y_{el} = \frac{5}{48} \cdot \frac{M_{\text{Sd2}} \cdot L_{\text{eff}}^{2}}{E_{cm} \cdot I_{ci}} = \frac{5}{48} \cdot \frac{0,00780 \cdot 4,747^{2}}{1,63} = 0,01123m$$
$$y_{el} = 0,01123m = 1,12cm < 1,90cm = \frac{L_{\text{eff}}}{250}$$

7.2.2 Long term deflection

For long term deflection an effective modulus of elasticity is used,

$$E_{c,eff} = E_{cm} / (1 + \phi)$$

 $E_{c,eff} = 1000 \text{ N} / \text{mm}^2$

and

therefore,

$$n = \frac{E_s}{E_{c,eff}} \approx \frac{200000 N/mm^2}{1000 N/mm^2} = 200$$

Moment of area of AAC and reinforcement.

$$l_{c,brutto} = \frac{b \cdot x^3}{12} + n \cdot (7 \cdot \pi \cdot (\emptyset_1/2)^4 / 4 + 3 \cdot \pi \cdot (\emptyset_2/2)^4 / 4) = 7527,12 \text{ cm}^4$$

Centre of gravity,

$$y_S = \frac{b \cdot x \cdot (h - x/2) + n \cdot (A_{s1} \cdot y_{s1} + A_{s2} \cdot y_{s2})}{b \cdot x + n \cdot (A_{s1} + A_{s2})} = \frac{19206,0}{1579,6} = 12,16 \text{ cm}$$

Moment of inertia for reinforcement,

$$I_{ST} = b \cdot x \cdot (h - \frac{x}{2} - y_s)^2 + n \cdot A_{s1} \cdot (y_{s1} - y_s)^2 + A_{s2} \cdot (y_{s2} - y_s)^2$$

$$= 122475,74cm^4$$

$$E_{c,eff} \cdot I_{ci} = E_{c,eff} \cdot (I_{C;BRUTTO} + I_{st}) = 1000 \cdot (7527,1 + 122475,7) \cdot 10^{-8}$$

$$= 1.300MNm^2$$

Deflection due to load combination 3 (quasi-permanent combinations):

$$y_{\infty} = \frac{5}{48} \cdot \frac{M_{\text{Sd3}} \cdot L_{\text{eff}}^{2}}{E_{c,\text{eff}} \cdot I_{ci}} = \frac{5}{48} \cdot \frac{0,00710 \cdot 4,747^{2}}{1,300} = 0,0128m$$
$$y_{\infty} = 0,0128m = 1,28cm < 1,90cm = \frac{L_{\text{eff}}}{250}$$

7.3 Combination of deflection uncracked / cracked

7.3.1 Short-term deflection

The short term deflection for the intermediate situation (cracked/uncracked) due to frequent loads is:

$$k \cdot p_{II} + (1 - k) \cdot p_{I} = 0.473 \cdot 1.12 + (1 - 0.473) \cdot 0.75 = 0.93cm$$

EN 12602 (A.44)

$$k = 1 - 0.8 \cdot (M_{cr} / M_{sd2})^2 = 1 - 0.8 \cdot (6.33 / 7.80)^2 = 0.473$$

M_{cr}: cracking moment

M_{sd2}: bending moment for frequent combination of loading

 $p_{\pi} \colon \text{short-term deflection for cracked condition}$

p₁: short-term deflection for uncracked condition

$$y_{el} = 0.93cm < 1.90cm = \frac{L_{eff}}{250}$$

7.3.2 Long-term deflection

By considering an effective modulus of elasticity ($E_{c,eff}$) and quasi-permanent combination of loading is:

$$k \cdot p_{II} + (1 - k) \cdot p_{I} = 0,473 \cdot 1,28 + (1 - 0,473) \cdot 1,05 = 1,16cm$$

where
$$k = 1 - 0.8 \cdot (M_{cr} / M_{sd2})^2 = 1 - 0.8 \cdot (6.33 / 7.80)^2 = 0.473$$

M_{cr}: cracking moment

M_{sd2}: bending moment for frequent combination of loading

 p_{π} : short-term deflection for cracked condition p_{π} : short-term deflection for uncracked condition

$$y_{\infty} = 1,16cm < 1,90cm = \frac{L_{\text{eff}}}{250}$$

Annex A

$$1000 \cdot m_d = \frac{1000 \cdot M_{Sd1} \cdot \gamma_C}{\alpha \cdot f_{ck} \cdot \gamma_S} \\ A_s = A_C \cdot \varpi \cdot \frac{\alpha \cdot f_{ck} \cdot \gamma_S}{\gamma_C \cdot f_{yk}} \\ M_{sd1} \\ bending moment under characteristic combination of loading (respecting transport load situations) \\ d & effective depth of component \\ A_c & cross section of AAC, A_c = b \cdot d \\ A_s & cross sectional area of reinforcement \\ f_{ck} & characteristic compressive strength of AAC \\ f_{yk} & characteristic yield strength of reinforcing steel \\ \gamma_{c,ductile} & partial safety factor of AAC for ductile failure \\ \gamma_S & partial safety factor for reinforcing steel \\ \end{cases}$$

$\epsilon_{ extsf{c}}$	$arepsilon_{ extsf{s}}$	k _x	k _z	1000 · m _d	stainless steel,	steel,
[‰]	[‰]				f _{yk} = 235 MPa	$f_{yk} = 500 MPa$
0,25	10,00	0,024	0,992	1,512	1,5	524
0,50	10,00	0,048	0,984	5,858	5,9	952
0,75	10,00	0,070	0,977	12,78	13,0	
1,00	10,00	0,091	0,970	22,04	22,7	
1,25	10,00	0,111	0,963	33,44	34,7	
1,50	10,00	0,130	0,957	46,79	48,9	
1,75	10,00	0,149	0,950	61,92	65,	16
2,00	10,00	0,167	0,944	78,70	83,3	
2,25	10,00	0,184	0,938	95,72	102,0)
2,50	10,00	0,200	0,931	111,7	120,0	
2,75	10,00	0,216	0,924	126,8	137,3	
3,00	10,00	0,231	0,917	141,0	153,8	
3,00	9,75	0,235	0,915	143,5	156,9	
3,00	9,50	0,240	0,913	146,1	160,0	
3,00	9,25	0,245	0,912	148,8	163,3	
3,00	9,00	0,250	0,910	151,6	166,7	
3,00	8,75	0,255	0,908	154,5	170,2	
3,00	8,50	0,261	0,906	157,5	173,9	
3,00	8,25	0,267	0,904	160,7	177,8	
3,00	8,00	0,273	0,902	163,9	181,8	
3,00	7,75	0,279	0,899	167,3	186,0	
3,00	7,50	0,286	0,897	170,8	190,5	
3,00	7,25	0,293	0,894	174,5	195,1	
3,00	7,00	0,300	0,892	178,3	200,0	
3,00	6,75	0,308	0,889	182,3	205,1	
3,00	6,50	0,316	0,886	186,5	210,5	
3,00	6,25	0,324	0,883	190,9	216,2	
3,00	6,00	0,333	0,880	195,5	222,2	
3,00	5,75	0,343	0,876	200,3	228,6	
3,00	5,50	0,353	0,873	205,3	235,3	
3,00	5,25	0,364	0,869	210,6	242,4	
3,00	5,00	0,375	0,865	216,1	250,0	
3,00	4,75	0,387	0,860	222,0	258,1	
3,00	4,50	0,400	0,856	228,1	266,7	
3,00	4,25	0,414	0,851	234,6	275,9	
3,00	4,00	0,429	0,845	241,5	285,7	
3,00	3,75	0,444	0,840	248,7	296,3	
3,00	3,50	0,462	0,833	256,4	307,7	
3,00	3,25	0,480	0,827	264,5	320,0	
3,00	3,00	0,500	0,819	273,1	333,3	
3,00	2,75	0,522	0,812	282,3	347,8	
3,00	2,50	0,545	0,803	292,0	363,6	
3,00	2,25	0,571	0,794	302,3	381,0	
3,00	2,00	0,600	0,783	313,3	400,0	434,8
3,00	1,75	0,632	0,772	325,0	421,1	523,0
3,00	1,50	0,667	0,759	337,4	444,4	644,1
3,00	1,25	0,706	0,745	350,6	470,6	818,4
3,00	1,00	0,750	0,729	364,6	510,9	1.087,0
-,	.,00	5,. 55	5,720	55 1,0	0,0,0	1.001,0